Rayat Shikshan Sanstha's

Yashavantrao Chavan Institute of Science, Satara (Autonomous Institute)

Department of Computer Science

Scheme of Credit for M.Sc. Computer Science W e f (June 2022-23)

1. SUBJECT: Computer Science

2. YEAR OF IMPLEMENTATION: New Syllabi for the M.Sc. I Computer Science will be implemented from June 2022 onwards.

3. PREAMBLE:

Master of Science is an integrated academic degree in faculty of Science. The faculty is not ignoring the developments in the field of Computer Science. The revision of existing syllabus of 6 Computer Science subject in science faculty is essential. This is a humble endeavor to initiate the process towards an era of knowledge. The students from science faculty should also be competent for this change in the technology. In this year, a student will able to understand Computer languages and technologies to build software with confidence. In the subject, the student will also get a basic and proper knowledge in the field of Artificial Intelligence and IOT.

4. GENERALOBJECTIVES OF THE COURSE:

- **1.** To create post-graduates with sound knowledge of fundamentals of Computer Science, who can contribute towards advancing science and technology.
- 2. To create post-graduates with sufficient capabilities in Computer Science who can become researchers and developers to satisfy the needs of the core Computer Science Industry.
- 3. To develop ability among students to formulate, analyze and solve real life problems.
- **4.** To provide opportunity to students to learn the latest trends in Computer Science and make them ready for life-long learning process.
- **5.** To make the students aware of professional ethics of the industry, and prepare them with basic soft skills essential for working in community and professional teams.
- **6.** To prepare the students for postgraduate studies through competitive examinations, enabling them to reach higher echelons of excellence.
- 7. To produce Computer Science professionals who can be directly employed or start his/her own work as Software Developer, Data Scientist, testing professional, Network engineer and even an entrepreneur in IT industry.

5. DURATION: 02Years (Full Time)

6. PATTERN: SEMESTER EXAM

- 7. MEDIUM OF INSTRUCTIONS: ENGLISH
- 8. STRUCTURE OF COURSE:

1. FIRST SEMESTER

Level	Course Code	Title of the Course	Course Category	No. of Lectures Per Week	Credits			
	MCST 101	Design and Analysis of Algorithms Theory		4	4			
	MCST 102	Principals of Programming Language	Theory	4	4			
	MCST 103	Advanced Database Management Systems	Theory	4	4			
	CCS (Elective: Any one among two)							
8	MCST 104: E1	Advanced Networking						
	MCST 104: E2	Blockchain Technology	Theory	4	4			
	MCSP105	Lab I	Practical	4	4			
	MCSP 106	Lab II	Practical	4	4			
	AECC- I	English		2	2			
	SEC – I	Information Technology		2	2			
				Total	28			

2. SECOND SEMESTER

Level	Course Code	Title of the Course	Course Category	No. of Lectures Per Week	Credits
	MCST 201	Python Programming	Theory	4	4
8	MCST 202	Cloud Computing	Theory	4	4
	MCST 203	Cyber Security and Laws	Theory	4	4
	MCST 204	Digital Image Processing Theory		4	4
	MCST205:E1	Mathematical and Statistical Foundations	Theory	4	4
	MCST205:E2	Control Systems			
	MCSP 206	Lab III	Practical	4	4
	MCSP 207	Lab IV	Practical	4	4
	AECC- II	English		2	2
	SEC – II	Information Technology		2	2
				Total	32

3. THIRD SEMESTER

Level	Course Code	Title of the Course	Course Category	No. of Lectures Per Week	Credits
	MCST 301	Emerging Technologies	Theory	4	4
	MCST 302	Data Mining	Theory	4	4
	MCST 303	Data Visualization using Tableau	Theory	4	4
	MCST 304	Artificial Intelligence	Theory	4	4
9	MCST 305:E1	Machine Learning	Theory	Λ	1
	MCST 305:E2	Fundamentals of IOT	Theory	4	4
	MCSP 306	Lab V	Practical	4	4
	MCSP 307	Lab VI	Practical	4	4
	SEC – III	Start-Ups and Entrepreneurship: An approach for Sustainable Economy		2	2
	SEC – IV			2	1
		Research Training (20 to 40 Working Days)	-	-	1
				Total	32

4. FOURTH SEMESTER

Level	Course Code	Title of the Course	Course Category	No. of Lectures Per Week	Credits				
	MCST 401	Big data Analytics	Theory	4	4				
	CCS (Elective: Any one among two)								
	MCST 402 Deep Learning Th Microcontrollers of IoT		Theory	4	4				
	MCSP 403	Lab V	Practical	4	4				
9	MCSP 404	Major Project	Project	-	1				
	SEC – V	CIII (Center of Innovation, Invention and Incubation)		2	2				
	SEC – IV	Internship / Industrial Training (30 to 60 Working Days)			2				
		MOOCs / SWYAM / NPTEL			1				
	-		-	Total	18				

5. Evaluation Structure

				Internal E	Evalua	tion	ESE	Total	Credits
Level	Course Title	Course Category	ISE- I	Mid Semester	ISE- II	Activity / (Activity +Project)			
	MCST 101	Design and Analysis of Algorithms	10	10	10	10	60	100	04
8	MCST 102	Principals of Programming Language	10	10	10	10	60	100	04
	MCST 103	Advanced Database Management Systems	10	10	10	10	60	100	04
	MCST 104	CCS I	10	10	10	10	60	100	04
	MCSP 105	Lab I	-	-	-	40	60	100	04
	MCSP 106	Lab II	-	-	-	40	60	100	04
	AECC- I	English	05	05	05	05	30	50	02
	SEC – I	Information Technology	05	05	05	05	30	50	02
				Total	700	28			

M.Sc. I Semester I

M.Sc. I Semester II

			Intern	al Evalua	tion	ESE	Total	Credits	
Level	Course Title	Course Category	ISE-I	Mid Semester	ISE-II	Activity / (Activity +Project)			
	MCST 201	Python Programming	10	10	10	10	60	100	04
8	MCST 202	Cloud Computing	10	10	10	10	60	100	04
	MCST 203	Cyber Security and Laws	10	10	10	10	60	100	04
	MCST 204	Digital Image Processing	10	10	10	10	60	100	04
	MCST 205	CCS II	10	10	10	10	60	100	04
	MCSP 206	Lab I	-	-	-	40	60	100	04
	MCSP 207	Lab II	-	-	-	40	60	100	04
	AECC- I	English	05	05	05	05	30	50	02
	SEC – I	Information Technology	05	05	05	05	30	50	02
							Total	800	32

Rules and Regulations:

- 1. Core courses will be offered only to the students of M.Sc. Computer Science.
- 2. The pre-requisites for electives courses will be decided by the departmental committee and Certificate and diploma program will be mandatory for all students.
- 3. Electives will be offered for minimum 08 and maximum 12students in view of the infrastructure of the department. Electives to be offered or otherwise will be at the sole discretion of the departmental committee.

4. Minimum attendance required to appear for semester-end examination will be 75 % for each credit course.

Semester I

Course I

MCST101: Design& Analysis of Algorithms

Course Objectives: Student will be able to:

- 1. learn the algorithms and to learn basic Algorithm Analysis techniques and understand the use of asymptotic notation.
- 2. understand different design strategies and Greedy Method.
- 3. understand classical problem and solutions and learn a variety of useful algorithms
- 4. understand classification of problems

Credits=4	SEMESTER-I	No. of hours
	MCST101: Design& Analysis of Algorithms	per unit/
		credits
Credit –I	Unit I: Basics of Algorithms	(15)
UNIT I		
	Basics of Algorithms , Space complexity , Time complexity, worst case-best case-average case , complexity, asymptotic notation ,Recursive and non-recursive algorithms , Sorting algorithms (insertion sort, heap sort, bubble sort) ,Sorting in linear time: counting sort, concept of bucket and radix sort ,Searching algorithms: Linear, Binary, Divide and conquer strategy ,General method, control abstraction , Binary search, Merge sort, Quick sort , Comparison between Traditional Method of Matrix Multiplication vs. Strassen's Matrix Multiplication	
Credit –I UNIT II	Unit II: Greedy Method	(15)
	Knapsack problem, Job sequencing with deadlines, Minimum-cost spanning trees: Kruskal and Prim's algorithm, Optimal storage on tapes, Optimal merge patterns, Huffman coding, Shortest Path :Dijkstra's Algorithm Graphs: Traversals, Topological sort, Minimum spanning trees, single source shortest path, All pair shortest path, Maximum flow problems.	
Credit –I UNIT III	Unit III: Dynamic Programming	(15)
	Principle of optimality, Matrix chain multiplication, 0/1 Knapsack Problem i)Merge & Purge ii)Functional Method, Bellman Ford Algorithm, All pairs Shortest Path Floyd- Warshall Algorithm ,Longest common subsequence, ,String editing, Travelling Salesperson problem	
Credit –I UNIT IV	Unit IV: Backtracking and Problem Classification	(15)
	General method , Fixed Tuple vs. Variable Tuple Formulation , n- Queen's problem • Graph coloring problem , Hamiltonian cycle , Sum of subsets Problem Classification - Nondeterministic algorithm • The class of P, NP, NP-hard and NP -Complete problems • Cook's theorem	

Course Outcomes: Students should be able to

- 1. Understanding Algorithmic complexity and analyzing the same
- 2. Developing an understanding of various techniques and methods to design algorithms
- 3. Make the algorithm and solve real-world problems
- 4. Analyze traditional algorithms and apply to various problems.

Reference Books:

- Ellis Horowitz, Sartaj Sahni & Sanguthevar Rajasekaran, "Computer algorithms", Silicon Pr Publication, 2007 (Unit I (1-68,91-99), Unit II (127-179), Unit III (197-250), Unit IV(2532998,339-368)).
- 2. T. Cormen, C. Leiserson, & R. Rivest, "Introduction to Algorithms", MIT Press, 2009. (Unit I (5-57 ,151-200) ,Unit II (359-397), Unit III (1048-1086),Unit IV(1111))
- 3. Steven Skiena, "The Algorithm Manual", Springer, 2010. Unit I (31-57) Unit II(103-139) Unit III(316-350)
- 4. Jungnickel, "Graphs, Networks and Algorithms", Springer, 2012.
- Rajesh K. Shukla, "Analysis and Design of Algorithms: A Beginner's Approach", Wiley, 2015. Sandeep Sen, "Design and Analysis of Algorithms: A Contemporary Perspective", Cambridge University Press, 2019 (Unit I (54-78) Unit II(92-103) Unit IV(230-254))

Semester I

Course II

MCST 102: Principles of Programming Language Learning

Course Objectives: Student will be able to-

- 1. Compare programming language designs
- 2. Learn new languages more quickly
- 3. Understand basic language implementation techniques
- 4. Learn small programs in different programming Languages

Credits=4	SEMESTER-I	No. of hours per
	MCST 102: Principles of Programming Language	unit/ credits
	Learning	
Credit –I	Unit I: Introduction, Names, Scopes, and Bindings	(15)
UNIT I		
	The Art of Language Design, The Programming	
	Language Spectrum, Why Study Programming	
	Languages?, Compilation and Interpretation,	
	Programming Environments, The Notion of Binding	
	Time, Object Lifetime and Storage Management,	
	Static Allocation- (Stack-Based Allocation, Heap-	
	Based Allocation, Garbage Collection Scope	
	Rules), Static Scoping, Nested Subroutines,	
	Declaration Order, Dynamic Scoping The meaning of	
	Names in a Scope, Aliases, Overloading,	
	Polymorphism and Related Concepts, the Binding of	
	Referencing Environments, Subroutine Closures,	
	First-Class Values and Unlimited Extent, Object	
	Closures Macro Expansion	
Credit –I	Unit II: Functional Programming in Scala	(15)
UNIT II		
	Strings, Numbers, Control Structures, Classes and	
	Properties, Methods, Objects, Functional	
	Programming, List, Array, Map, Set	
Credit –I	Unit III: Data Abstraction and Object Orientation	(15)
UNIT III		
	Object-Oriented Programming, Encapsulation and	
	Inheritance Modules, Classes, Nesting (Inner	
	Classes), Type Extensions, Extending without	
	Inheritance, Initialization and Finalization Choosing	
	a Constructor, References and Values, Execution	
	Order, Garbage Collection, Dynamic Method	
	Binding, Virtual- and NonVirtual Methods, Abstract	
	Classes, Member Lookup, Polymorphism, Object	
	Closures, Multiple Inheritance, Semantic	
	Ambiguities, Replicated Inheritance	
Credit –I	Unit IV: Control Flow	(15)
UNIT IV		
	Expression Evaluation, Precedence and	
	Associativity, Assignments, Initialization, Ordering	
	Within Expressions, Short-Circuit Evaluation,	
	Structured and Unstructured Flow, Structured	

Alternatives to goto, Sequencing, Selection - Short-	
Circuited Conditions, Case/Switch Statements	
Iteration, Iteration - Enumeration-Controlled Loops,	
Combination Loops, Iterators, Logically Controlled	
Loops Recursion, Recursion - Iteration and	
Recursion, Applicative- and Normal-Order	
Evaluation	

Course Outcomes:

After completion of this course student should be able to

- 1. Get knowledge of, and ability to use, language features used in current programming languages.
- 2. To prepare student to think about programming languages analytically:
- 3. Understand key concepts in the implementation of common features of programming languages.
- 4. To implement object oriented Programming concepts.

- 1. Michel L. Scott, "Programming Language Pragmatics", Kaufmann Publishers, An Imprint of Elsevier, USA, 2015(Unit 1,(Pg. 5 -26) Unit –II Pg(27 -144).
- 2. Robert W. Sebesta, "Concepts of Programming Languages", Eighth Edition, Pearson Education, 2016. (Unit-II Pg. 57-124)
- 3. Alvin Alexander, "Scala Cookbook", O'REILLY publication, 2013(Unit-IV, Pg. 3-115).
- 4. Rajiv Chopra, "Principles of Programming Languages", I K International Publishing House, 2014(Unit III Pg. 224 -230).
- 5. Dowek, "Principles of Programming Languages", Springer, 2009(Unit III, Pg-56-80).

Semester I

Course III MCST103: Advanced Database Management System

Course Objectives: student will be able to

- 1. Learn different types of databases.
- 2. Study of query languages and active databases.
- 3. Be familiar with the indexing techniques.
- 4. Learn how to solve complex and recursive queries.

Credits=4	SEMESTER-I	No. of hours per
	MCST103: Advanced Database Management	unit/ credits
	System	
Credit –I	Unit I: Query Processing and Evaluation	(15)
UNIT I		
	Measures of Query Cost, Selection Operation, Sort	
	Join Operation, other Operations Evaluation of	
	Expression, Transformation of Relational	
	Expressions, Role of Relational Algebra and	
	Relational Calculus in query optimization,	
	Estimating Statistics of Expression, Choice of	
	Evaluation Plans, Views and query processing,	
	Storage and query optimization	
Credit –I	Unit II: Transaction Management and Recovery	(15)
UNIT II		
	Advanced feature of Transactions, Enhanced Lock	
	Based and timestamp-based Protocols, Multiple	
	Granularity, Multi-version Schemes, Deadlock	
	Handling, Weak Levels of Consistency, Concurrency	
	in Index Structures, Recovery and Atomicity,	
	Recovery with Concurrent Transaction, Buffer	
	Management, Advanced Recovery Techniques,	
	Remote Backup Systems, Use of SQL in recovery,	
	Examples of etransactions.	
Credit –I	Unit III: Database Security and Authorization	(15)
UNIT III		
	Levels of database security, Access control,	
	Multilevel security, Statistical database security,	
	Audit trails in the databases, Examples of e security	
Credit –I	Unit IV: Distributed Databases	(15)
UNIT IV		
	Centralized versus non centralized Databases,	
	Homogeneous and Heterogeneous DDBMS and their	
	comparison, Functions and Architecture ,Distributed	
	database design, query processing in DDBMS,	
	Distributed concurrency management, deadlock	
	management, Distributed Commit Protocols: 2 PC	
	and 3 PC, Concepts of replication servers	

Course Outcomes: student should be able to

- 1. Demonstrate the basics of query evaluation and heuristic query optimization techniques.
- 2. Apply Concurrency control and recovery mechanisms for the desirable database problem.
- 3. Apply security to database.
- 4. Design and implement the database system with the fundamental concepts of DBMS.

TEXT BOOK:

1. R. Elmasri S. B. Navathe, Fundamentals of Database Systems, Addison Wesley, 2015 (Unit I – (Pg. 207-249), Unit II – (Pg. 551-576), (Unit III – (Pg. 731-750)

2. Raghu Ramakrishnan, Database Management Systems, Mcgraw-Hill, 4th edition, 2015. (Unit I – (Pg. 177-189), (Unit I – (Pg. 521-564), (Unit III – (Pg. 597-632)

REFERENCES:

- A. Silberschatz, H. F. Korth S. Sudershan, Database System Concepts, McGraw Hill, 6th Edition 2010. (Unit I – (Pg. 679-733), Unit II – (Pg. 737-780), Unit III – (Pg.559-590), Unit IV – (Pg. 783-792))
- Thomas Connolly, Carolyn Begg, Database Systems: A Practical Approach to Design, Implementation and Management,6th Edition,2012 (Unit I – (Pg. 679-733), Unit II – (Pg. 737-780), Unit III – (Pg.559-590),Unit IV – (Pg. 783-792))
- 3. Pramod J. Sadalage and Marin Fowler, NoSQL Distilled: A brief guide to merging world of Polyglot persistence, Addison Wesley, 2012. (Unit I (Pg. 3-12), Unit II (Pg. 47-59), Unit IV (Pg. 81-84))
- 4. Shashank Tiwari ,ProfessionalNoSql,Wiley ,2011 (Unit I (Pg. 73-169))

Semester I Course IV MCST104:E1: Advanced Computer Networks

Course Objectives: Student will be able to-

- 1. understand the concept of security and its applications
- 2. study of various detection and prevention techniques in diversified environments
- 3. learn various vulnerabilities, threats and attacks
- 4. prepare globally competent post graduates with enhanced domain knowledge and skills attaining professional excellence

Credits=4	SEMESTER-I	No. of hours per
	MCST104:E1: Advanced Computer Networks	unit/ credits
Credit –I	Unit I: Introduction to Network layers and	(15)
UNIT I	Protocols	
	Introduction to networking, TCP/IP Protocol Model,	
	IP Addressing- Address Space, Network Address	
	Translation, Notations, Internet Protocol- Datagram	
	format, fragmentation, IPV4, IPV6, Virtual Private	
	network technology, Mobile IP – Addressing,	
	Agents, Efficiency in Mobile IP.	
Credit –I	Unit II: Transport Layer Protocols	(15)
UNIT II		
	User Datagram Protocol-User datagram, UDP	
	Services, UDP Applications, Transmission Control	
	Protocol- TCP services, TCP Features, State	
	Transition Diagram, Flow Control, Error Control,	
	TCP congestion, SCTP- Services, features, flow	
	control, error control.	
Credit –I	Unit III: Classification of Network Attacks &	(15)
UNIT III	Cryptographic Techniques	
	Basic Security Concepts, History Of Network	
	Security, Data Security Vs. Network Security,	
	Computer And Network Attacks, Introduction To	
	Vulnerabilities, Threats And Attacks, Layers Of	
	Attacks, Spoofing, Sniffing, Malware: Viruses,	
	Worms, Trojan horses , Ciphers, Cryptography-	
	Cryptographic systems, Types of Cryptography:	
	Symmetric key and Asymmetric Key Cryptography,	
	Encryption and Decryption Techniques.	
Credit –I	Unit IV: Application Layer & Protocols	(15)
UNIT IV		
	WWW, HTTP, File Transfer- FTP, TFTP, Electronic	
	mail – architecture, web based mails ,email security,	
	SMTP,POP,IMAP, MIME ,SNMP, DNS – Concept	
	of domain name space, DNS Operations ,DHCP-	
	Static and Dynamic allocation, DHCP operations,	
	Remote Login – TELNET and SSH.	

Course Outcomes: student should be able to

- 1. Design and choose appropriate security model
- 2. Specify and identify deficiencies in existing protocols, and then go onto formulate new and better protocols.
- 3. use specific frameworks as per applications need.
- 4. Study of a working knowledge of datagram and internet.

References:

- 1. Behrouz A. Forouzan, "TCP/IP Protocol Suite", McGraw Hill, 4th Ed., 2010. (Unit 1 Pg 93,Unit 2 Pg 373,Unit 3 Pg 873, Unit 4 Pg 542)
- Tanenbaum, A. S., "Computer Networks", Prentice Hall, Upper Saddle River, New Jersey, 5 th Ed., 2013.(Unit 1 – Pg 355, Unit 2 – Pg 495, Unit 3 – Pg 763, Unit 4 – Pg 611)
- 3. B.M.Harwani, "Advanced Computer Networks", DT Editorial Services, Dreamtech New Delhi-

2014. (Unit 1 – Pg 15) 4. Mark Stamp, "Information Security: Principles and Practice", John Wiley and Sons, 2011.

(Unit 3 – Pg 17, Unit 4 – Pg 311)

4. William Stallings, "Cryptography and Network Security: Principle and Practice", Pearson, 5th Edition, 2017.(Unit 1 – Pg 19)

Semester I Course IV MCST104:E2: Blockchain Technology

Course Objectives: student will be able to

- 1. understand the history, types and applications of Blockchain
- 2. acquire knowledge about cryptography and consensus algorithms.
- 3. Study of how to deploy projects using Web3j
- 4. Understand the design blockchain based applications.

Credits=4	SEMESTER-I	No. of hours per
	MCST104:E2: Blockchain Technology	unit/ credits
Credit –I	UNIT 1: Introduction to Blockchain	(15)
UNIT I		
	Distributed DBMS – Limitations of Distributed	
	DBMS, Introduction to Block chain – History,	
	Definition, Distributed Ledger, Blockchain	
	Categories – Public, Private, Consortium,	
	Blockchain Network and Nodes, Peer-to-Peer	
	Network, Mining Mechanism, Generic elements of	
	Blockchain, Features of Blockchain, and Types of	
	Blockchain.	
Credit –I	UNIT 2: Blockchain Architecture	(15)
UNIT II		
	Operation of Bitcoin Blockchain, Blockchain	
	Architecture – Block, Hash, Distributer P2P,	
	Structure of Blockchain- Consensus mechanism:	
	Proof of Work (PoW), Proof of Stake (PoS),	
	Byzantine Fault Tolerance (BFT), Proof of	
	Authority (PoA) and Proof of Elapsed Time (PoET)	
Credit –I	UNIT 3: Blockchain-Based Futures System	(15)
UNIT III		
	Project presentation- Futures smart contract:	
	Blockchain oracles- Web3j: Setting up the Web3J-	
	Installing web3j- Wallet creation, Java client: The	
	wrapper generator- Initializing web3j- Setting up	
	Ethereum accounts- Deploying the contract	
Credit –I	UNIT 4: Blockchains in Business and Creating	(15)
UNIT IV	ICO	
	Public versus private and permissioned versus	
	permission less blockchains- Privacy and	
	anonymity in Ethereum- Why are privacy and	
	anonymity important? - The Ethereum Enterprise	
	Alliance- Blockchainas-a-Service- Initial Coin	
	Ottering (ICO): Project setup for ICO	
	implementation- Token contracts- Token sale	
	contracts-Contract security and testing the code.	

Course Outcomes: student should be able to -

- 1. discuss and describe the history, types and applications of Blockchain
- 2. Gains familiarity with cryptography and Consensus algorithms.
- 3. Create and deploy projects using Web3j.
- 4. study to implement an ICO on Ethereum

Reference Books:

1. Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, decentralization, and smart contracts explained", 2nd Edition, Packt Publishing Ltd, March 2018.

2. Bellaj Badr, Richard Horrocks, Xun (Brian) Wu, "Blockchain By Example: A developer's guide to creating decentralized applications using Bitcoin, Ethereum, and Hyperledger", Packt Publishing Limited, 2018

3. Andreas M. Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly Media Inc, 2015

4. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction", Princeton University Press, 2016.

Semester I

LAB-I

MCSP105: Design& Analysis of Algorithms and Principles of Programming

Course Objectives: student will be able to

- 1. To understand how to implement different algorithms.
- 2. To learn how to use different methods to solve real world Problems.
- 3. To learn how to program using scala language.
- 4. To understand implementation of Object Oriented concepts.

Credits=2	SEMESTER-I	No. of hours per
	PRACTICAL COURSE – I: LAB - I	unit/ credits
		(30)
GROUP A:	Design& Analysis of Algorithms	
	1. Write a program to Sorting Algorithms	
	2. Write a program to Searching Algorithms	
	3. Write a program to Warshall's Algorithm	
	4. Write a program to Knapsack Problem	
	5. Write a program to Shortest Paths Algorithm	
	6. Write a program to Bellman Ford Algorithm	
	7. Write a program to Minimum Cost Spanning	
	Tree	
	8. Write a program to All Pairs Shortest Paths	
GROUP B:	Design& Analysis of Algorithms	
	1. Programs based on Control Structures	
	1. Write a program to calculate average of all	
	numbers between n1 and n2(eg.100 to 300	
	Read values of n1 and n2 from user)	
	2. Write a program to calculate factorial of a	
	number.	
	3. Write a program to read five random	
	numbers and check that random numbers are	
	perfect number or not.	
	4. Write a program to find second maximum	
	number of four given numbers.	
	5. Write a program to calculate sum of prime	
	6 Write a program to read an integer from user	
	o. while a program to read an integer from user	
	defined functions	
	2.Classes and Objects	
	1. Define a class CurrentAccount (accNo.	
	name, balance, minBalance). Define	
	appropriate constructors and operations	
	withdraw(), deposit(), viewBalance(). Create	
	an object and perform operations.	
	2. Define a class Employee (id, name, salary).	
	Define methods accept() and	
	display().Display details of employee having	
	maximum salary	

3.	Create abstract class Order (id, description).	
	Derive two classes	
	PurchaseOrder&SalesOrder with members	
	Vendor and Customer. Create object of each	
	PurchaseOrder and SalesOrder. Display the	
	details of each account.	
4.	Create abstract class Shape with abstract	
	functions volume() and display(). Extend	
	two classes Cube and Cylinder from it.	
	Calculate volume of each and display it.	
3.List		
1.	Create Lists using five different	
	methods(Lisp style, Java style, fill, range	
	and tabulate methods)	
2.	Create two Lists and Merge it and store the	
2	sorted in ascending order.	
3.	Create a list of integers divisible by 3 from	
4	List containing numbers from 1 to 50.	
4.	Create a list of even numbers up to 10 and	
	calculate its product.	
4 Set		
1.500	Write a program to create two sets and find	
	common elements between them.	
2.	Write a program to display largest and	
2.	smallest element of the Set	
3.	Write a program to merge two sets and	
	calculate product and average of all	
	elements of the Set	

Course Outcomes: student should be able to -

- 1. understand and implement different algorithms.
- 2. learn and use different methods to solve real world Problems.
- 3. Evaluate various program using scala language.
- 4. Study of to implement Object Oriented concepts.

- Ellis Horowitz, Sartaj Sahni & Sanguthevar Rajasekaran, "Computer algorithms", Silicon Pr Publication, a. 2007.
- 2. T. Cormen, C. Leiserson, & R. Rivest, "Introduction to Algorithms", MIT Press, 2009.
- 3. Steven Skiena,"The Algorithm Manual", Springer, 2010.
- 4. Jungnickel, "Graphs, Networks and Algorithms", Springer, 2012.
- 5. Rajesh K. Shukla, "Analysis and Design of Algorithms: A Beginner's Approach", Wiley, 2015.
- 6. Sandeep Sen, "Design and Analysis of Algorithms: A Contemporary Perspective", Cambridge University Press, 2019.
- 7. Michel L. Scott, "Programming Language Pragmatics", Kaufmann Publishers, An Imprint of Elsevier, USA, 2015.
- 8. Robert W. Sebesta, "Concepts of Programming Languages", Eighth Edition, Pearson Education, 2016.
- 9. Alvin Alexander, "Scala Cookbook", O'REILLY publication, 2013.
- 10. Rajiv Chopra, "Principles of Programming Languages", I K International Publishing House, 2014.
- 11. Dowek, "Principles of Programming Languages", Springer, 2009.

Semester I

LAB-II

MCSP106: Advanced DBMS & Advanced Computer Networks and Blockchain Technology

Course Objectives: student will be able to

1. Understand the basic concepts and the applications of database systems.

2.use the basics of SQL and construct queries using SQL.

3.study the basics of Computer Networks

4.study TCP /IP Protocols and implement it.

Credits=2	SEMESTER-I	No. of hours per
	PRACTICAL COURSE – I: LAB - II	unit/ credits
		(30)
GROUP A:	Advanced DBMS	
	1. 1.DDL and DML	
	2. Single row and aggregate functions	
	3. Joins and Sub queries	
	4. Anonymous blocks and control structures	
	5. Iterations 3 hours 6. Cursors	
	6. Functions and Procedures	
	7. Exception Handling and triggers	
	8. DBA Concepts	
	9. XML, DTD, XQuery Representations	
GROUP B:	Advanced Computer Networks	
	1. Exercise on Data Transfer.	
	2. Exercise on Advanced Data Transfer.	
	3. Exercise of Flow and Error Control.	
	4. Exercise on Data Encryption with	
	algorithms.	
	5. Exercise on Data Decryption with	
	algorithms.	
GROUP C:	Blockchain Technology	
	1. Create a Public Ledger vs. Private Ledger	
	with the various attributes like Access,	
	Network Actors, Native token, Security,	
	Speed and examples.	
	2. How would a blockchain help in processing	
	insurance claims of the insurance industry,	
	froud contract complexity, hymon error	
	information flows in rainsurance and alaims	
	processing? Use various espects to	
	summarize the solution	
	3 Prepare your build system and Building	
	Bitcoin Core	
	4 Write Hello World smart contract in a higher	
	programming language (Solidity).	
	5. Solidity example using arrays and functions	
	6. create a Mayen project using Web3i.	
	7. Construct and deploy your contract (Use	
	deploy method)	

Course Outcomes: student should be able to -

- 1. Understand the basic concepts and the applications of database systems.
- 2. Master the basics of SQL and construct queries using SQL.
- 3. Apply cryptographic algorithms of encryption and description
- 4. Learn TCP /IP Protocol suite.

- 1. Silberschatz, H. F. Korth S. Sudershan, "Database System Concepts", McGraw Hill, 6th Edition 2010.
- 2. Thomas Connolly, Carolyn Begg, "Database Systems: A Practical Approach to Design, Implementation and Management", 6th Edition,2012.
- 3. Pramod J. Sadalage and Marin Fowler, "NoSQL Distilled: A brief guide to merging world of Polyglot persistence", Addison Wesley, 2012.
- 4. Shashank Tiwari ,"ProfessionalNoSql", Wiley ,2011.
- 5. Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing", Third Edition, Pearson Education, 2008.
- 6. S Sridhar, "Digital Image Processing", Oxford University Press, 2016.
- 7. Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins, "Digital Image Processing Using MATLAB", Second Edition, Tata McGraw Hill Publication, 2020.
- 8. S Jayaraman, S Esakkirajan, T Veerakumar, "Digital Image Processing", Tata McGraw Hill Publication, 2017.
- 9. Andreas M. Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly Media Inc, 2015
- Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction", Princeton University Press, 2016.

SEMESTER II

Course V

MCST 201: Python Programming

Course Objectives: student will be able to

- 1. Understand of programming language paradigm.
- 2. Use of Understanding of Lambda Calculus.
- 3. Learning functional programming language Python.
- 4. learn and implement Database concepts in python

Credits=4	SEMESTER-II	No. of hours per
	MCST 201: Python Programming	unit/ credits
Credit –I UNIT I	Unit I : Introduction To Python	(15)
	Installation,Working with Python ,Understanding Python variables , Python basic Operators ,Understanding python blocks, Declaring and using Numeric data types: int, float, complex , Using string data type and string operations , Defining list and list slicing , Use of Tuple data type.	
Credit –I	Unit II: Python Program Flow Control	(15)
	Conditional blocks using if, else and elif, Simple for loops in python, For loop using ranges, string, list and dictionaries, Use of while loops in python Loop manipulation using pass, continue, break and else, Programming using Python conditional and loops block, Modules And Packages, Organizing python codes using functions, Understanding Packages	
Credit –I	Unit III: Python String, List And Dictionary	(15)
UNIT III	Manipulations	
	Building blocks of python programs, Understanding string in build methods, List manipulation using in build methods, Dictionary manipulation Programming using string, list and dictionary in build functions, Reading config files in python, Writing log files in python, Read functions, read(), readline() and readlines(), Write functions, write() and writelines(), Manipulating file pointer using seek Programming using file operations	
Credit –I	Unit IV: Python Database Interaction and	(15)
UNIT IV	Libraries	
	SQL Database connection using python , Creating and searching tables Reading and storing config information on database , Numpy , Pandas , Matplotlib , Scipy Only Introduction	

Course Outcomes: On completion of the course, student should be able to-

- 1. understand and use basics of Python
- 2. Solve problems by using Python language.
- 3. Evaluate projects by using Python Framework.
- 4. create application with help of python libraries.

- 1. Greg Michaelson, "An Introduction to Functional Programming Through Lambda Calculus" ,Dover Publications Inc.,2011. (Unit 1 (6.1-6.14))
- 2. Jan van Eijck , Christina Unger, "Computational Semantics with Functional Programming", Cambridge University Press, 2012 . (Unit 3 (15-32))
- 3. Charles Dierbach ,"Introduction to Computer Science Using Python: A Computational Problem-Solving Focus", John Wiley & Sons, 2013. Unit 1-3 (1-206) , Unit 4 (289-460)
- Kenneth C. Louden, "Programming Languages: Principles and Practice", Course Technology Inc., 2011. Unit 1(47-90))
- 5. Richard L. Halterman, "LEARNING TO PROGRAM WITH PYTHON", Southern Adventist University, 2011 (Unit 1 (1-9,11-32m,35-53) Unit 2 (57-77)Unit 3(81-97),Unit 4 (115-231,267-272))
- 6. Dusty Phillips, "Python 3 Object-oriented Programming Second Edition", Packt Publishing, 2015. (All related to object oriented Programming and Design patterns)
- 7. Adrian Holovaty and Jacob Kaplan-Moss, "The Definitive Guide to Web Development Done Right", Apress Publishing, 200 (Unit 1 (3-16), Unit 2(17-30, 59-64))

Semester II

Course VI

MCST 202: Cloud Computing

Course Objectives:

- 1. understand the principles and paradigm of Cloud Computing
- 2. study to appreciate the role of Virtualization Technologies
- 3. study of to design and deploy Cloud Infrastructure
- 4. Understand cloud security issues and solutions

Credits=4	SEMESTER-II	No. of hours per
	MCST 202: Cloud Computing	unit/ credits
Credit –I	Unit I: Introduction to Cloud Computing	(15)
UNIT I		
	Overview, Evolution of Cloud Computing, Types of	
	Cloud, Desired Features of a Cloud, Benefits and	
	Disadvantages of Cloud Computing, Cloud	
	Infrastructure Management, Infrastructure as a	
	Service Providers, Platform as a Service Providers.	
	Multitenant Technology. Cloud-Enabling	
	Technology: Broadband Networks and Internet	
	Architecture, Data Center Technology. Infrastructure	
	as a Service, Platform as a Service, Software as a	
	Service, Cloud Deployment Models	
Credit –I	Unit II: Cloud Models & Services:	(15)
UNIT II		
	Cloud Models – Benefits of Cloud Models Public	
	Private Hybrid and Community Clouds Types of	
	Clouds Services: SaaS PaaS JaaS DaaS MaaS	
	CaaS Service Providers: Google App Engine	
	Microsoft Azure Amazon FC2 IBM Sales Force	
	Introduction to ManReduce GES HDES Hadoon	
	Framework.	
Credit –I	Unit – III: Essentials & Collaborating with Cloud:	(15)
UNIT III		
	Hardware and Infrastructure – Clients, Security,	
	Network. Services: Accessing Cloud – Platforms.	
	Web Applications, Web APIs, Web Browsers; Cloud	
	Storage – Overview, Cloud Storage Providers:	
	Standards – Application, Client, Infrastructure,	
	Service: Centralizing Email Communications.	
	Collaborating on Calendars, Schedules & Task	
	Management, Event Management, Project	
	Management and Contact Management	
Credit –I	Unit IV: Virtualization and Security for Cloud	(15)
UNIT IV		
	Introduction to Virtualization Technologies, Load	
	Balancing and Virtualization, Understanding Hyper	
	visors, Virtual Machines Provisioning and	
	Manageability Virtual Machine Migration Services.	
	Provisioning in the Cloud Context Virtualization of	
	CPU, Memory, I/O Devices, Virtual Clusters and	
	Resource management, Overview – Cloud Security	
	Challenges and Risks – Software-as-a-Service	
	Security	

Course Outcomes: student should be able to

- 1. Understand the fundamental principles of distributed computing.
- 2. Understand how the distributed computing environments known as Grids can be built from lower level services.
- 3. Understand the importance of virtualization in distributed computing and how this has enabled the development of Cloud Computing.
- 4. Analyze the performance of Cloud Computing.

- Brian J.S. Chee and Curtis Franklin, "Cloud Computing: Technologies and Strategies of the Ubiquitous Data Center", CRC Press, 2019. (Unit I –(Pg.1-26), Unit II– (Pg. 27-71), Unit III – (Pg. 73-103), Unit IV – (Pg. 139-150))
- Rajkumar Buyya, Christian Vecchiola, S. ThamaraiSelvi, "Mastering Cloud Computing: Foundations and Applications Programming, McGraw Hill, 2013. (Unit I – (Pg. 3-27), Unit II– (Pg. 111-139), Unit IV – (Pg. 71-109))
- **3.** Kai Hwang, Geoffrey C Fox, Jack G Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.(Unit I –(Pg.3-51), Unit II(Pg. 189-203), Unit III (Pg. 215-225),Unit IV (Pg. 129-183))

Semester II Course VII

MCST 203: Cyber Security and Law

Course Objectives: student should be able to

- 1) Study the concepts of Cyber Security
- 2) Understand and defend computer systems and networks from cyber security attacks
- 3) Understand the cyber law and Rights in Cyberspace
- 4) Understand Cyber Torts and Dispute Resolution in Cyberspace

Credits=4	SEMESTER-II	No. of hours per
	MCST 203: Cyber Security and Law	unit/ credits
Credit –I UNIT I	Unit-I Introduction to Cyber Security	(15)
	Overview of Cyber Security, Internet Governance – Challenges and Constraints, Cyber Threats:- Cyber Warfare-Cyber Crime-Cyber terrorism-Cyber Espionage, Need for a Comprehensive Cyber Security Policy, Need for a Nodal Authority, Need for an International convention on Cyberspace. Cyber Security Vulnerabilities and Cyber Security Safeguards:Cyber Security Vulnerabilities Overview, vulnerabilities in software, System administration, Complex Network Architectures, Open Access to Organizational Data, Weak Authentication, Unprotected Broadband communications, Poor Cyber Security Awareness. Cyber Security Safeguards- Overview, Access control, Audit, Authentication, Biometrics, Cryptography, Deception, Denial of Service Filters, Ethical Hacking, Firewalls, Intrusion Detection Systems, Response, Scanning, Security policy, Threat Management.	
Credit –I UNIT II	Unit-II Securing Web Applications and Servers	(15)
	Introduction, Basic security for HTTP Applications and Services, Basic Security for SOAP Services, Identity Management and Web Services, Authorization Patterns, Security Considerations, Challenges. Intrusion Detection and Prevention: Intrusion, Physical Theft, Abuse of Privileges, Unauthorized Access by Outsider, Malware infection, Intrusion detection and Prevention Techniques, Anti-Malware software, Network based Intrusion detection Systems, Network based Intrusion Prevention Systems, Host based Intrusion prevention Systems, Security Information Management, Network Session Analysis, System Integrity Validation.	

Credit –I UNIT III	Unit-III Introduction to Cyber Law and Rights in Cyberspace	(15)
	Computer and its impact in society, Roles of International Law, the state and Private Sector in Cyberspace, Cyber Security Standards. The INDIAN Cyberspace, National Cyber Security Policy 2013,Need for Cyber Law, Cyber Jurisprudence at Indian Level, Freedom of speech and expression in cyberspace, Right to access cyberspace-access to internet, Right to privacy, Right to data protection	
Credit –I UNIT IV	Unit –IV Cyber Torts and Dispute Resolution in Cyberspace	(15)
	Different offences under IT act,2000, Different types of civil wrongs under the IT act ,2000, Interface with copyright law, Interface with patent law, Concept of Jurisdiction, Indian context of Jurisdiction and IT Act,2000, Dispute resolutions, Impact of cyber warfare on privacy, identity theft, International law governing Censorship, online privacy, copyright regulations, Online Intermediaries in the governance of Internet, Social Networking Sites, Human Rights, Trademarks and Domain name related issue	

Course Outcomes: After completion of this course student should be able to

- 1) Realize the need for Cyber Security
- 2) Understand the need for Security in day to day communications
- 3) Understand the cyber law and rights in cyberspace
- 4) Understand Cyber Torts and Dispute Resolution in Cyberspace

- 1. Preston Gralla, "How Personal and Internet Security Work", QuePublications, 2004 (Unit I ,Pg. 15-199).
- 2. Alfred Basta and Wolf Halton, Computer Security Concepts, Issues and Implementation, Cengage Learning, 2010(Unit I, Pg. 5-26)(Unit- II Pg. 40-80).
- 3. Joseph Pelton , Indu B.Singh, "Digital Defense: A Cybersecurity Primer", Copernicus, 2015(Unit III, Pg. 25-48), (Unit III, Pg. 83-101)..
- 4. John R. Vacca, "Computer and Information Security Handbook", Morgan Kaufmann, 3rd Edition, 2017(Unit I, Pg. 8-56), (Unit III, Pg. 80-112).
- 5. Brian Craig, "Cyberlaw: The Law of the Internet and Information Technology", Lexis Nexis publishing, 2014(Unit III, Pg. 1-66), (Unit IV, Pg. 70-201).
- 6. Jason Andress, Steve Winterfeld, "Cyber Warfare: Techniques, Tactics and Tools for Security Practitioners2nd Edition ", Syngress publishing, 2013 (Unit IV, Pg. 56-110).

Semester II Course VIII MCST 204: Digital Image Processing

Course Objectives: student will be able to

- 1. learn the fundamental concepts of Digital Image Processing.
- 2. study basic image processing operations.
- 3. understand image analysis algorithms.
- 4. study current applications in the field of digital image processing.

Credits=4	SEMESTER-II	No. of hours per
Credit –I	Unit I: Fundamentals of Image Processing	(15)
	Steps in image processing, Human visual system, Sampling & quantization, Representing digital images, Spatial & gray-level resolution, Image file formats, Basic relationships between pixels, Distance Measures. Basic operations on images- image addition, subtraction, logical operations, scaling, translation, rotation. Image Histogram, Color fundamentals & models – RGB, HSI YIQ.	
Credit –I UNIT II	Unit II: Image Enhancement, Restoration and Compression	(15)
	Spatial domain enhancement: Point operations-Log transformation, Power-law transformation, Piecewise linear transformations, Histogram equalization. Filtering operations- Image smoothing, Image sharpening. Frequency domain enhancement:2D DFT, Smoothing and Sharpening in frequency domain. Homomorphic filtering. Restoration: Noise models, Restoration using Inverse filtering and Wiener filtering. Types of redundancy, Fidelity criteria, Lossless compression – Run length coding, Huffman coding, Bit-plane coding, Arithmetic coding. Introduction to DCT, Wavelet transform. Lossy compression – DCT based compression, Wavelet based compression. Image and Video Compression Standards – JPEG, MPEG.	
Credit –I UNIT III	Unit III: Image Segmentation and Morphological Operations	(15)
	Image Segmentation: Point Detections, Line detection, Edge Detection-First order derivative – Prewitt and Sobel. Second order derivative – LoG, DoG, Canny. Edge linking, Hough Transform, Thresholding – Global, Adaptive. Otsu's Method. Region Growing, Region Splitting and Merging. Morphological Operations: Dilation, Erosion, Opening, Closing, Hit-or-Miss transform, Boundary Detection, Thinning, Thickening, Skeleton.	

Credit –I UNIT IV	Unit IV: Object Recognition and Applications	(15)
	Feature extraction, Patterns and Pattern Classes,	
	Representation of Pattern classes, Types of	
	classification algorithms, Minimum distance	
	classifier, Correlation based classifier, Bayes	
	classifier. Applications: Biometric Authentication,	
	Character Recognition, Content based Image	
	Retrieval, Remote Sensing, Medical application of	
	Image processing	

Course Outcomes: After successfully completing the course students should be able to-

- 1. understand fundamentals of Image Processing
- 2. understand image segmentation and morphological operations.
- 3. develop and implement algorithms for digital image processing.
- 4. apply image processing algorithms for practical object recognition applications.

Reference Books:

- 1. Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing", Third Edition, Pearson Education, 2008. (Unit I, Pg. 58-118,Unit II, Pg. 334-403,Unit- III Pg. 649-698,Unit IV pg.883-926).
- 2. Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins, "Digital Image Processing Using MATLAB", Second Edition, Tata McGraw Hill Publication, 2020.
- 3. S Jayaraman, S Esakkirajan, T Veerakumar, "Digital Image Processing", Tata McGraw Hill Publication, 2017. (Unit I, Pg. 1-42,Unit II, Pg. 243-337,Unit- III Pg. 368-397,Unit IV pg.408-434).

Semester II Course IX MCST205:E1: Mathematical and Statistical Foundation

Course Objectives: student will be able to

- 1. Understand the notion of vector space.
- 2. Study of to Work out algebra of linear transformations.
- 3. Understand the connection between linear transformation and matrices.
- 4. Study to work out Eigen values, Eigen vectors and its connection with real life situation.

Credits=4	SEMESTER-II	No. of hours per
	MCST205:E1: Mathematical and Statistical	unit/ credits
	Foundation	
Credit –I	UNIT – I: Vector Spaces	(15)
UNIT I		
	Vector space, Subspace, Sum of subspaces, direct sum,	
	Quotient space, Homomorphism or Linear	
	transformation, Kernel and Range of homomorphism,	
	Fundamental Theorem of homomorphism, Isomorphism	
	theorems, Linear Span, Finite dimensional vector Space,	
	Linear dependence and independence, basis, dimension	
	of vector space and Subspaces.	
Credit –I	UNIT – II: Linear Transformations	(15)
UNIT II		
	Linear Transformation, Rank and nullity of a linear	
	transformation, Sylvester's Law, Algebra of Linear	
	Transformations, Sum and scalar multiple of Linear	
	Transformations. The Vector space of homomorphism,	
	Product (composition) of Linear Transformations,	
	Linear Operator, Linear functional, Invertible and	
	nonsingular Linear Transformation, Eigen space,	
	Characteristic Polynomial of a matrix and remarks on it,	
	similar matrices, Characteristic Polynomial of a Linear	
	operator, Examples on eigenvalues and eigenvectors.	
Credit –I	UNIT III: Statistical Modeling and Distributions	(15)
UNIT III		
	Overview of linear correlation and correlation,	
	application and numerical examples on linear correlation	
	and correlation. Introduction to Residual Error, Mean	
	Square Error, RMSE, Multilinear correlation	
	,Regression, Logistic Regression, Simulation using	
	Monte Carlo Method, Overview of Discrete and	
	Continuous Probability Distributions, Binomial	
	Distribution, Poisson, Distribution, Geometric	
	Distribution, Exponential Distribution, Normal	
	Distributions, Numeric Examples and Random No.	
Cue 14 I	Generation Using Python	(15)
Credit –I	UNIT IV: Hypothesis Tests and Statistical Tests	(15)
UNITIV		
	Typical Analysis procedures, Hypothesis Concept,	
	Errors, p-Value, and Sample Size, Confusion Matrix,	
	ANOVA, 1est on Sample Mean, Comparison of Two	
	dote analysis	
	uala allalysis	
1		

Course Outcomes: student should be able to

- 1. Explain the concepts of basis and dimension of a vector space.
- 2. Understands Eigen values, Eigen functions, Characteristic Polynomial of a matrix.
- 3. Design and analyse real world engineering problems by applying various statistical modeling techniques.
- 4. Study Model and solve computing problem using correlation, and resampling using appropriate statistics algorithms.

- Khanna V. K. and Bhambri S. K., "A Course in Abstract Algebra", Vikas Publishing House PVT Ltd., New Delhi , 5thEdition 2016. (Unit I,(Pg. 275-328) Unit –II Pg(329-393))
- 2. H. Anton & C. Rorres, "Elementary Linear Algebra (with Supplemental Applications)", Wiley India Pvt.Ltd (Wiley Student Edition), New Delhi, 11thEdition 2016.
- 3. S. Friedberg, A. Insel, L. Spence, "Linear Algebra", Prentice Hall of India, 4th Edition, 2014.(Unit 1,(Pg. 6-24) Unit –II Pg(26-58))
- 4. David Lay, Steven Lay, Judi McDonald, "Linear Algebra and its Applications", Pearson Education Asia, Indian Reprint, 5th Edition 2016. (Unit I,(Pg. 191-264))
- 5. Thomas Haslwanter, "An Introduction to Statistics with Python with Applications in the Life Sciences", Springer International Publishing Switzerland 2016.(Unit III(Pg. 39,51-71,76-78,89-118) Unit –IV Pg(121-156))

Semester II Course IX MCST205:E2: Control Systems

Course Objectives: Student will be able to:-

- 1. Study of systems theory to complex real-world problems in order to obtain models that are expressed using differential equations, transfer functions, and state space equations.
- 2. Understand system behaviour based on the mathematical model of that system where the model may be expressed in time or frequency domain.
- 3. Study of the behaviour of closed loop systems using various methods.
- 4. Understand controllers using classical PID methods, root locus methods, and frequency domain methods.

Credits=4	SEMESTER-II	No. of hours per
	MCST205:E1: Mathematical and Statistical Foundation	unit/ credits
Credit –I	UNIT I: Introduction to Control Theory	(15)
UNIT I		
	A.Basic Concepts of Control System, B. Open loop and	
	Closed loop systems, C. Classifications, effect of feedbacks	
	on Control System performance. D.Transfer function	
	modeling and representation of Control system, pole &	
	zero concept, E. Mathematical modeling of linear	
	mechanical and Electrical systems, F. Electrical analogy,	
	Block reduction techniques, G.Signal flow graph, Mason's	
	gain formula.	
Credit –I	UNIT II Time Domain Analysis and stability	(15)
UNIT II		
	A. Type and Order of Control system, B. Typical tests	
	signal, Time Response of first and second order systems to	
	unit step input, C. Steady state errors, D. Time Domain	
	Specifications of Second Order System, E. Dominant	
	Closed loop Poles of Higher Order Systems. F. Concept of	
	Stability: absolute, relative and marginal, nature of system	
	response, stability analysis using Hurwitz's criterion,	
	Routh's criterion, G. Basic properties of Root Loci,	
	Construction of Root loci, H. Angle and magnitude	
	condition for stable systems, I. Concept of inverse root	
	locus and root contour.	(15)
Credit –I	UNIT III Frequency Domain and State Variable	(15)
UNITII	Analysis	
	A. Steady state response of a system to sinusoidal input, B.	
	Relation between time and frequency response for second	
	order systems, C. Frequency response specifications, D.	
	Stability Analysis with Bode Plots, E. Nyquist stability	
	criterion. F. Introduction to state space analysis, G. State	
	differential equation iii) Transfer function	
Crodit I	UNIT IV Control system components and	(15)
UNIT IV	controllers	(13)
	A Modeling and transfer function of control system	
	components. Potentiometer, B, DC and AC Servemeters	
	gear trains C Tacho-generators D Design concents of P	
	PI PD PID controllers Compensator Networks.lag and	
	lead	

Course Outcomes: After successful completion students should be able to:

- 1. Understand the modeling of discrete systems in state space
- 2. Apply programming strategies in the domain of control systems
- 3. Understand the systems in Time and frequency domain.
- 4. Design modern control systems with computer simulation

Reference Books:

- 1. I.J. Nagrath, M.Gopal "Control Systems Engineering", 5th Edition, New Age International Publication Ogata Katsuhiko, "Modern Control Engineering", 4th Edition, PHI.
- 2. Kuo B.C. Automatic Control System, PHI, New Delhi, Third Edition
- 3. Schaum's Series book "Feedback Control Systems".Les Fenical "Control Systems", 1st Edition, Cengage Learning India.
- 4. Samarjeet Ghosh, "Control Systems Theory & Applications", 1 st Pearson education.
- 5. S.K. Bhattacharya, "Control Systems Engineering", 1st edition, Pearson education.
- 6. Norman S. Nise, "Control System Engineering", 5th Edition, Wiley.
- 7. U.A.Bakshi, V.U.Bakshi "Control System Engineering", First Edition 2008, Technical Publications, Pune

Semester II LAB–III MCSP : 206 Python Programming and Cloud Computing

Course Objectives: student will be able to

- 1. learn how to read and write files in Python and use libraries of Python.
- 2. learn how to design object-oriented programs with Python classes.
- 3. Understand the problems and solutions to cloud application problems.
- 4. Study of to apply principles of best practice in cloud application design and management

Credits=2	SEMESTER-II	No. of hours per
	PRACTICAL COURSE – III: LAB - III	unit/ credits
		(30)
GROUP A:	Python Programming	
	1. Introduction To Python Installation of Python on	
	different OS Working with Python as a calculator	
	2. Programs on Flow Control Basic programs for	
	understanding of different control flow in Python	
	3. Functions Writing Programs using functions Use of	
	Modules Use of packages	
	4. Python programs for String, List Building blocks of	
	python programs Understanding string in build	
	methods List manipulation using in build methods	
	5. Dictionary Manipulations Dictionary manipulation	
	Programming using string, list and dictionary in build	
	functions	
	6. Python File Operation Reading config files in python	
	writing log files in python read functions, read(),	
	readine() and readines() write functions, write() and	
	7 Puthon Database Interaction Demo for SOL / SOlite	
	7. I ython Database interaction Denio for SQL/ SQUE	
	8 Python Libraries Numpy Pandas	
	9 Python Libraries Matnlotlib Sciny	
	10 Python Framework Tutorial on Diango	
	10. I fution I fution work Tutorial on Djungo	
GROUP B:	Cloud Computing	
	1. Working and Implementation of Infrastructure as a	
	service.	
	2. Working and Implementation of Software as a service.	
	3. Working and Implementation of Platform as a services.	
	4. Practical Implementation of Storage as a Service.	
	5. Working of Google drive to make spreadsheet and	
	Holes.	
	7. Write a program for web feed	
	8 Execute the step to Demonstrate and implementation	
	of cloud on single sign on	
	9. Practical Implementation of cloud security.	
	10. Installing and Developing Application Using Google	
	App Engine.	

Course Outcomes: student should be able to

- 1. Understand the fundamental principles of distributed computing.
- 2. Understand how the distributed computing environments known as Grids can be built from lower level services
- 3. Explain basic principles of Python programming language
- 4. Implement object oriented concepts, Implement database and GUI applications.

Reference Books:

- 1. Greg Michaelson, "An Introduction to Functional Programming Through Lambda Calculus" ,Dover Publications Inc.,2011.
- 2. Jan van Eijck, Christina Unger, "Computational Semantics with Functional Programming", Cambridge University Press, 2012.
- 3. Charles Dierbach,"Introduction to Computer Science Using Python: A Computational Problem-Solving Focus", John Wiley & Sons, 2013.
- 4. Kenneth C. Louden, "Programming Languages: Principles and Practice", Course Technology Inc., 2011.
- 5. Richard L. Halterman, "LEARNING TO PROGRAM WITH PYTHON", Southern Adventist University, 2011
- 6. Dusty Phillips, "Python 3 Object-oriented Programming Second Edition", Packt Publishing, 2015.
- 7. Adrian Holovaty and Jacob Kaplan-Moss, "The Definitive Guide to Web Development Done Right", Apress Publishing, 2009.
- 8. Brian J.S. Chee and Curtis Franklin, "Cloud Computing: Technologies and Strategies of the Ubiquitous Data Center", CRC Press, 2019.
- 9. Rajkumar Buyya, Christian Vecchiola, S. ThamaraiSelvi, "Mastering Cloud Computing: Foundations and Applications Programming, McGraw Hill, 2013.
- 10. Kai Hwang, Geoffrey C Fox, Jack G Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012

Semester II LAB–IV MCSP 207: Cyber Security & Laws and Digital Image Processing and Control Systems

Course Objective: student will be able to

- 1. study different types of Vulnerabilities of E-commerce services and learn encryption and decryption techniques.
- 2. Understand the basics of images, image transforamtions, Image Color Processing.
- 3. Understand system behavior based on the mathematical model of that system where the model may be expressed in time or frequency domain.
- 4. Study of controllers using classical PID methods, root locus methods, and frequency domain methods.

Credits=2	SEMESTER-II	No. of hours per
	PRACTICAL COURSE – IV: LAB - IV	unit/ credits
		(30)
GROUP A:	Cyber Security & Laws	
	1. Study of the features of firewall in providing network	
	security and to set Firewall Security in windows.	
	2. Steps to ensure Security of any one web browser	
	(Mozilla Firefox/Google Chrome) 7. Study of	
	different types of vulnerabilities for hacking a	
	websites / Web Applications.	
	3. Analysis the Security Vulnerabilities of E-commerce	
	services.	
	4. Analysis the security vulnerabilities of E-Mail Application	
	5. Perform encryption and decryption of Caesar cipher.	
	Write a script for performing these operations.	
	6. Perform encryption and decryption of a Rail fence	
	cipher. Write a script for performing these operations	
	7. Case Study on – Cyber Harassment.	
	8. Case Study on – Cyber Law	
	9. Case Study on – Patent Law	
GROUP B:	Digital Image Processing	
	1 Image Basics	
	1. Image Dasies.	
	2. W \triangle P to read an image & Display its Matrix	
	information	
	2 Image Arithmetic: -	
	1. W A P to perform image Addition	
	2. W.A.P to perform image Subtraction.	
	3. W.A.P to perform image Multiplication.	
	4. W.A.P to perform image Division.	
	3. Image Transforms using Properties of 2D-DFT. :-	
	1. W.A.P to implement 2DFT Convolution Property.	
	2. W.A.P to implement 2DFT Rotational Property.	
	4. Image Enhancement in Spatial Domain:-	
	1. Enhancement Through Point Operation:-	
	2. Linear Gray Level Transformations:-	
	5.Image Enhancement in Frequency Domain:-	
	1. Low-Pass Filtering in Frequency Domain:-	

	2. High-Pass Filtering In Frequency Domain:-	
	6. Color Image Processing:-	
	1. W.A.P to Read an RGB Image and extract the three	
	Colour Components Red, Green and Blue.	
	2. W.A.P to Read a colour image and separate the	
	colour image into Red, Green and Blue Planes.	
	3. W.A.P to implement RGB to YCbCr Model	
	Conversion.	
	4. W.A.P to implement RGB to HSV Model	
	Conversion	
GROUP C:	Control Systems	
	A. Study of introduction to MATLAB.	
	B. Study of commands in MATLAB.	
	C. MATLAB base program along with the functions from	
	the Control System Toolbox.	
	D.Design and analysis of first order control	
	system(Simulink)	
	E. Design and analysis of second order control	
	system(Simulink)	
	F. BODE PLOT USING MAT LAB G.NYQUIST PLOT	
	USING MAT LAB	
	H.To obtain step response of the given system and evaluate	
	the effect P,PD controllers	
	I. To obtain step response of the given system and evaluate	
	the effect PI and PID controllers	
	J. Simulation of transfer function using Poles and Zeros	

Course Outcomes: student should be able to

- 1. Understand to check security of Emails and E commerce Vulnerabilities.
- 2. learn case studies of Cyber Security.
- 3. Understand modeling of discrete systems in state space.
- 4. Evaluate programming strategies in the domain of control systems

References :

- 1. Preston Gralla, "How Personal and Internet Security Work", QuePublications, 2004.
- 2. Alfred Basta and Wolf Halton, Computer Security Concepts, Issuesand Implementation, Cengage Learning, 2010.
- 3. Joseph Pelton , Indu B.Singh, "Digital Defense: A Cybersecurity Primer", Copernicus, 2015.
- 4. John R. Vacca, "Computer and Information Security Handbook", Morgan Kaufmann, 3rd Edition, 2017.
- 5. Brian Craig, "Cyberlaw: The Law of the Internet and Information Technology", Lexis Nexis publishing, 2014.
- 6. Jason Andress, Steve Winterfeld, "Cyber Warfare: Techniques, Tactics and Tools for Security Practitioners2nd Edition ", Syngress publishing, 2013.
- 7. Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing", Third Edition, Pearson Education, 2008.
- 8. S Sridhar, "Digital Image Processing", Oxford University Press, 2016.
- 9. Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins, "Digital Image Processing Using MATLAB", Second Edition, Tata McGraw Hill Publication, 2020.
- 10. S Jayaraman, S Esakkirajan, T Veerakumar, "Digital Image Processing", Tata McGraw Hill Publication, 2017.
- 11. Kuo B.C. Automatic Control System, PHI, New Delhi, Third Edition

12. Schaum's Series book "Feedback Control Systems".Les Fenical "Control Systems", 1st Edition, Cengage Learning India.